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F I L T R A T I O N  I N  A P O R O U S  M E D I U M  W I T H  A 
F L U C T U A T I N G  P E R M E A B I L I T Y  

V. V. Dzhabrailov and R. P. Meilanov UDC 532.546 

Based on the T-matrix method, filtration in a porous medium wtth a fluctuating permeability is investigated. 

A closed system of equations for the T-matrix and the pressure is obtained. A fluctuation correction to the 

output is calculated. Cases of correlation functions of the first and second kinds are analyzed. 

Investigation of the properties of porous media calls for solving several fundamental problems. One of these 

is associated with the complex spatially inhomogeneous structure, where it is necessary to leave the limits of the 

usual geometric concepts and invoke notions of fractal structures based on the use of fractional dimensions of space 

[ 1-3 ]. Another problem is associated with the multiphase state of the system and the need to take into account the 

properties of the phase interface, which is a particular state of the substance; at the present time this problem is 

being studied extensively and it calls for the development of the statistical physics of strongly nonequilibrium open 

systems. In porous media the interface portion is such that it contributes to the properties observed [4 ]. 

Investigations of the properties of porous media make wide use of methods of development in the quantum 

statistical physics of disordered media such as the method of percolations the coherent-potential approximation, 

and various versions of the diagram technique. The use of these methods provides a basis for the stochastic theory 

of filtration [5 ]. In the present work we investigate filtration in a porous medium using the T-operator method [6 ]. 

On the basis of the equations obtained, we investigate the effect of fluctuations in the permeability on the output. 

In contrast to the monotonically decreasing correlation functions (of the first kind), used previously we consider 

correlation functions of another class, namely, nonmonotonous functions (of the second kind). 

1. For simplicity of presentation, we consider the case of one-dimensional steady filtration in a stratum 

with a random permeability [5 ].The multidimensional case is considered in a similar way. The initial equation has 

the form 

d--- I k ( X ) ~ x P ( X ) ]  . (1) 

At the boundaries of the stratum nonrandom pressures are assigned: 

P(x = O) = PI , P(x ;~ /) = P2, (2) 

where 1 is the linear dimension of the stratum. The randomly inhomogeneous permeability k(x) is represented as 

~ : ( x ) = k  0 + ~ l ( x ) ,  k o = ( k ( x ) ) .  

Here <...> denotes averaging over an ensemble of realizations of the randomly inhomogeneous function k(x); kl (x) 

is the fluctuational additive to the permeability. We represent Eq. (1) in the form 

/~ (x) P (x) = - L l (x) P (x) ,  (3) 

where the operators L0(x) and LI (x) are defined as follows: 
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d 2 k I (x) 
L o ( x ) =  �9 L l ( x ) -  

dx 2 ' ko 

The solution to Eq. (3) has the form 

- - - L o +  
1 dk I (x) d 

k o dx dx 
(4) 

1 ! 
P (x) = 1' 0 (x) + 7 f dxlG (x, xl) L 1 (Xl) P (xl) , (5) 

0 

where Po(x) is the solution to the equation 

L o (x) Po (x) = 0 (6) 

with boundary conditions (2), and G(x, Xl) is the Green function of the problem (6) and (2): 

L o (x) G(x, xl) = - ~ (x- xl). (7) 

We introduce the T-operator according to the relation 

L! (x) P (x) = T (x) P0 (x). (8) 

Substituting Eq. (8) into Eq. (5), we obtain the following expression for the pressurz: 

1 l 
P (x) = 1,o (x) + y f dxlG (x, xl) T (xt) P0 (xl) '  (9) 

0 

As follows from Eqs. (8) and (9), the equation of motion for the T-operator can be represented as 

l t 
T (x) Po (x) = L 1 (x) 1,o (x) + 7 f ~xlLl (x) O (x, x~) T (xl) Po (x l ) .  (10) 

o 

Using the definitions (4), (7), and (8), it is possible to transform the equation for the T-operator to the form 

1 dk 1 (x) d P  O(x)  1 dk! (x) 1 l 
T(x) 1"0 (X) -k (x )  dx d ~ +  k(x~ dx l f dxlGx(x 'x l )  T (x l )Po(x l ) "  (11) 

0 

Note that the appearance of the multiplier 1/k(x) on the right-hand side of Eq. (11) corresponds to partial 

summation of the iteration series obtained from Eq. (11). It is possible to perform such partial summation due to 

the presence of the operator LO on the right-hand side of the operator Ll and to the definition of the Green function 

(7). 

The system of equations (9) and (11) is closed and forms a basis for the stochastic theory of filtration. 

Generalization to the multidimensional case does not change the form of Eqs. (9) and (11). 

2. As a specific application of Eqs. (9) and (11), we will calculate the output q(x): 

at" (x) (12) 
q (x) = k (x) dx 

Substituting expression (9) into Eq. (12), we will have the following relation for the output: 

de o (x) k (x) t 
q(x) = k ( x )  d-~- + ~ - - -  f dxlGx(X, X l )T (x l )Po(x l )  " (13) 

0 

Using Eq. (11) and perforrnining the iteration procedure in Eq. (13) with account for terms quadratic in the 

permeability fluctuation, wc obtain the following expression for the output: 
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Fig. I. Specific features  of correlat ion functions and the cor responding  

spectral functions of the first (curves a and c) and second (curves b and d) 

kind. 

q (x) = q0 
k I (x) 1 l dk 2 (Xl) 

0 

! t d k  I ( x l )  
- ~ f dx lG x (x, Xl) k I ( x l ) - -  

kol 0 dx I 

k I (x )  1 dk  I (Xl) 
+ lok~-- f dx lG x (x, x2) ~ + 

o dx I 

1 1 l 

+ 7o? fo dxl fo ax2G  (x, Ox, (x,, - -  

where qo = ko(dPo(x) /dx)  is the output of a homogeneous stratum. 

Using the Green function in Eq. (7) 

dkl (x t) dkl (xz) ] ,  

f dx I dx 2 

(x l - / ) x / l ,  x <_ x 1, 
G (x, Xl) = (x - /) X l / / ,  x ~ x 2 , 

(14) 

after lengthy but simple transforms in Eq. (14) and averaging over an ensemble of realizations of the random 

function k(x) ,  we finally obtain the following expression for the output [5 ]: 

: ~  l ' '  1 ~ -  I - S- ~ 1 - f dx f d x lK  (x, x2) , (15) 
qo k 0 D ~  0 0 

where K(x, x 1) = <kl (x )k l (X l )> is the correlation function of the permeability fluctuations. 

In approximating a correlation function, monotonically decreasing functions are generally used: the Laplace 

function exp ( - I x l / a ) ,  the Karman function (1 + I x l / a )  exp ( - I x l / a ) ,  and the Gauss function exp ( - x 2 / a 2 ) .  

Their fundamental  characteristics are identical, i.e., they attenuate at distances of the order  of the correlation 

radius a; the spectral density S(k) also decreases at a distance equal to the correlation radius and,  what is quite 

important, S(k = 0) > 0. However, as shown in [7, 8 ], in a number of cases the class of monotonically decreasing 

functions is not suitable for modeling inhomogeneities and must be extended. In particular, it is shown in [7 ] that 

the laplace function leads to divergent terms in fluctuation corrections to the frequencies of electromagnetic waves 

in inhomogeneous thin films. The need to extend the class of correlation functions was first pointed out in [9 ], 

where the following classification of spectral functions was given: 

lira f K( r )  d3x = (L't) 3 S ( 0 )  I > 0 the first typc ,  
w |  v L = 0 the second type .  
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Fig. 2. Calculated values of the functions.fo(z) (curve 1), II (z) (curve 2), and 

12(z) (curve 3). 

The specific features of correlation functions and the corresponding spectral functions are graphically shown in Fig. 

1. Curves a and b correspond to correlation functions of the first (S(O) > O) and second (S(O) == O) kind; curves c 

and d correspond to the spectral functions of the correlation functions of the first and second kind, respectively. 

A correlation function of the second kind is valid for specific strata. For example, the empirical normalized 

correlation function of the permeability for the DI stratum of the Bavlinsk oil deposit has a negative half-wave IS ] 

and corresponds to correlation functions of the second kind. 

As specific functions for calculating the output, we will consider a class of nonmonotonic functions of the 

form [10] 

Substituting Eq. (16) into Eq. (15), we obtain the following expression for the output: 

= D ( l f ( / ) )  (17) @ 1- l- 
qo k o D 

and the specific form of the function f(z) depends on the choice of the correlation function K(x, xt). The calculations 

lead to the following results: 

fo(z) = z-2 [v~ zerf (z) + exp(_ z2)_ 11 ' (18) 

v~- (19) 
f l  (z)  = ~ -  z e r r  ( z ) ,  

-2 [ ~ -  + 11 - ~ e x p ( - z 2 ) ,  /'2 (z)  = z - z e r r  (z)  - e x p  ( -  z 2) 1 ( 2 0 )  

where fO(Z) corresponds to the Gauss function [5 ], and fl(z) and f2(z) to the functions (16) for n = 1 and n = 2, 

respectively. Figure 2 presents numerical calculations of the functions (18), (19), and (20), where curves 1, 2, and 

3 correspond to thc functions f0, f l ,  and f2. As is seen, the values of the functions fl and/ '2, which correspond to 

correlation functions of the second kind, arc smaller in the region l > a than for correlation functions of the first 

kind. 

3. In conclusion it should be noted that in contrast to correlation functions of the first kind, which depend 

on one parameter, namely, the correlation radius a, correlation functions of the second kind are two-parameter 
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and depend on the correlation radius a on the "depth" index of the negative half-wave n. This provides wider 
possibilities in explaining experimental data. 

N O T A T I O N  

k(x), random inhomogeneous permeability; P(x), pressure; g(x), output; D, permeability dispersions; S(k), 
spectral permeability function. 
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